1/08/2013

Hemagglutinin homologue from H17N10 bat influenza virus exhibits divergent receptor-binding and pH-dependent fusion activities (Proc Natl Acad Sci USA, abstract, edited)

[Source: Proceedings of the National Academy of the Sciences of the United States of America, full text: (LINK). Abstract, edited.]

Hemagglutinin homologue from H17N10 bat influenza virus exhibits divergent receptor-binding and pH-dependent fusion activities

Xueyong Zhua, Wenli Yua, Ryan McBrideb, Yan Lic, Li-Mei Chend, Ruben O. Donisd, Suxiang Tongc, James C. Paulsona,b, and Ian A. Wilsona,e,1

Author Affiliations: Departments of aMolecular Biology and bChemical Physiology, eSkaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037; and dInfluenza Division and cDivision of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333

Edited by Peter Palese, Mount Sinai School of Medicine, New York, NY, and approved December 5, 2012 (received for review October 23, 2012)

 

Abstract

Bat influenza virus H17N10 represents a distinct lineage of influenza A viruses with gene segments coding for proteins that are homologs of the surface antigens, hemagglutinin (HA) and neuraminidase (NA). Our recent study of the N10 NA homolog revealed an NA-like structure, but with a highly divergent putative active site exhibiting little or no NA activity, and provided strong motivation for performing equivalent structural and functional analyses of the H17 HA protein. The overall structure of the H17 HA homolog from A/little yellow-shouldered bat/Guatemala/060/2010 at 3.18 Å resolution is very similar to other influenza HAs, with a putative receptor-binding site containing some conserved aromatic residues that form the base of the sialic acid binding site. However, the rest of the H17 receptor-binding site differs substantially from the other HA subtypes, including substitution of other conserved residues associated with receptor binding. Significantly, electrostatic potential analyses reveal that this putative receptor-binding site is highly acidic, making it unfavorable to bind any negatively charged sialylated receptors, consistent with the recombinant H17 protein exhibiting no detectable binding to sialylated glycans. Furthermore, the fusion mechanism is also distinct; trypsin digestion with recombinant H17 protein, when exposed to pH 4.0, did not degrade the HA1 and HA2, in contrast to other HAs. These distinct structural features and functional differences suggest that the H17 HA behaves very differently compared with other influenza HAs.

crystal structure – evolution – infection - protease susceptibility - viral entry

 

Footnotes

1To whom correspondence should be addressed. E-mail: Wilson@scripps.edu.

Author contributions: X.Z. and I.A.W. designed research; X.Z., W.Y., and R.M. performed research; X.Z., Y.L., L.-M.C., R.O.D., S.T., and I.A.W. contributed new reagents/analytic tools; X.Z., J.C.P., and I.A.W. analyzed data; and X.Z., R.O.D., S.T., J.C.P., and I.A.W. wrote the paper.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission.

Data deposition: The atomic coordinates and structure factors have been deposited in the Protein Data Bank, www.rcsb.org (PDB ID code 4I78).

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1218509110/-/DCSupplemental.

-

-------